[tex]\\ x^{2} \sqrt{x} \sqrt[n]{x} \frac{x}{y} x_{123} \leq \geq \neq \pi \alpha \beta \left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. \int\limits^a_b {x} \, dx \lim_{n \to \infty} a_n \\ x^{2} \geq \leq \neq \lim_{n \to \infty} a_n \int\limits^a_b {x} \, dx \leq \\ \sqrt{x} \sqrt{x} \beta \beta \beta \frac{x}{y} \neq \leq \left \{ {{y=2} \atop {x=2}} \r[/tex]