Answer:
[tex]sin(45)=\frac{AC}{AB} =\frac{AC}{12} \\AC=12\times sin(45)=12\times \frac{\sqrt{2}}{2}=6\sqrt{2}\\ cos(45)=\frac{CB}{AB} =\frac{CB}{12} \\CB=12\times cos(45)=12\times \frac{\sqrt{2}}{2}=6\sqrt{2}[/tex]
Step-by-step explanation:
[tex]sin(45)=\frac{AC}{AB} =\frac{AC}{12} \\AC=12\times sin(45)=12\times \frac{\sqrt{2}}{2}=6\sqrt{2}\\ cos(45)=\frac{CB}{AB} =\frac{CB}{12} \\CB=12\times cos(45)=12\times \frac{\sqrt{2}}{2}=6\sqrt{2}[/tex]