Solution :
Given :
Sample mean, [tex]$\overline x = 714.2$[/tex]
Sample size, n = 40
Standard deviation, s = 83.2
∴ The null hypothesis is [tex]$H_0 : \mu = 703.5$[/tex]
Alternate hypothesis is [tex]$H_a : \mu > 703.5$[/tex]
Test statistic :
[tex]$z = \frac{\overline x - \mu}{s / \sqrt n}$[/tex]
[tex]$z = \frac{714.2-703.5}{83.2 / \sqrt {40}}$[/tex]
z = 0.813
Now at α = 0.05, for a right tailed,
[tex]$z_{critical} = 1.645$[/tex]
Since, [tex]$z < z_{critical}$[/tex] , we fail to reject the null hypothesis.