Respuesta :
Answer:
C) 7.81
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Coordinates (x, y)
Algebra II
- Distance Formula: [tex]\displaystyle d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
Point A(-5, 3)
Point B(1, 8)
Step 2: Find distance d
Simply plug in the 2 coordinates into the distance formula to find distance d
- Substitute in points [Distance Formula]: [tex]\displaystyle d = \sqrt{(1--5)^2+(8-3)^2}[/tex]
- [√Radical] (Parenthesis) Subtract: [tex]\displaystyle d = \sqrt{(6)^2+(5)^2}[/tex]
- [√Radical] Evaluate exponents: [tex]\displaystyle d = \sqrt{36+25}[/tex]
- [√Radical] Add: [tex]\displaystyle d = \sqrt{61}[/tex]
- [√Radical] Evaluate: [tex]\displaystyle d = 7.81025[/tex]
- Round: [tex]\displaystyle d \approx 7.81[/tex]
Answer:
AB = 7.81
Step-by-step explanation:
Distance between 2 points = sqrt( (x2 - x1)^2 + (y2 - y1)^) )
x2 = - 5
x1 = 1
y2 = 3
y1 = 8
D = sqrt( -5 - 1)^2 + (3 - 8)^2 )
D = sqrt( (-6)^2 + (-5)^2 )
D = sqrt( (36 + 25)
D = sqrt( 61)
D = 7.81