Respuesta :

Answer: [tex]33.2[/tex]

Step-by-step explanation:

Given

CE=85

[tex]\angle C=67^{\circ}[/tex]

In [tex]\triangle CDE[/tex], using trigonometry

[tex]\Rightarrow \cos 67^{\circ}=\dfrac{CD}{CE}\\\\\Rightarrow CD=CE\cos 67^{\circ}\\\\\Rightarrow CD=85\times \cos 67^{\circ}\\\\\Rightarrow CD=33.2[/tex]

Given:

A figure of a right angle triangle.

To find:

The value of x.

Solution:

In a right angle triangle,

[tex]\cos \theta =\dfrac{Base}{Hypotenuse}[/tex]

In the given figure,

[tex]\cos C =\dfrac{CD}{CE}[/tex]

[tex]\cos 67^\circ =\dfrac{x}{85}[/tex]

[tex]0.39073\times 85=x[/tex]

[tex]33.21205=x[/tex]

Round to the nearest tenth.

[tex]x\approx 33.2[/tex]

Therefore, the measure of x is 33.2 units.