Respuesta :
Answer: [tex]33.2[/tex]
Step-by-step explanation:
Given
CE=85
[tex]\angle C=67^{\circ}[/tex]
In [tex]\triangle CDE[/tex], using trigonometry
[tex]\Rightarrow \cos 67^{\circ}=\dfrac{CD}{CE}\\\\\Rightarrow CD=CE\cos 67^{\circ}\\\\\Rightarrow CD=85\times \cos 67^{\circ}\\\\\Rightarrow CD=33.2[/tex]
Given:
A figure of a right angle triangle.
To find:
The value of x.
Solution:
In a right angle triangle,
[tex]\cos \theta =\dfrac{Base}{Hypotenuse}[/tex]
In the given figure,
[tex]\cos C =\dfrac{CD}{CE}[/tex]
[tex]\cos 67^\circ =\dfrac{x}{85}[/tex]
[tex]0.39073\times 85=x[/tex]
[tex]33.21205=x[/tex]
Round to the nearest tenth.
[tex]x\approx 33.2[/tex]
Therefore, the measure of x is 33.2 units.