Respuesta :

Answer:

[tex]x^4 - 1 = (x- 1)(x + 1)(x^2 + 1)[/tex]

[tex]2x^2 - 4x - 240 = 2(x + 10) (x - 12)[/tex]

Step-by-step explanation:

Given

[tex]1.\ x^4 - 1[/tex]

[tex]2.\ 2x^2 - 4x - 240[/tex]

Required

Factor

[tex]1.\ x^4 - 1[/tex]

Express as difference of two squares

[tex]x^4 - 1 = (x^2 - 1)(x^2 + 1)[/tex]

Express [tex]x^2 - 1[/tex] as difference of two squares

[tex]x^4 - 1 = (x- 1)(x + 1)(x^2 + 1)[/tex]

[tex]2.\ 2x^2 - 4x - 240[/tex]

Expand

[tex]2x^2 - 4x - 240 = 2x^2 -24x + 20x - 240[/tex]

Factorize

[tex]2x^2 - 4x - 240 = 2x(x -12) + 20(x - 12)[/tex]

Factor out x - 12

[tex]2x^2 - 4x - 240 = (2x + 20) (x - 12)[/tex]

Factor out 2

[tex]2x^2 - 4x - 240 = 2(x + 10) (x - 12)[/tex]