Respuesta :

Answer:

[tex]\displaystyle x=\left\{n\pi, \frac{3\pi}{2}+2n\pi \right\}, n\in\mathbb{Z}[/tex]

Step-by-step explanation:

We want to solve the equation:

[tex]\sin^2x+\sin x=0[/tex]

Factor:

[tex]\sin x(\sin x+1)=0[/tex]

Zero Product Property:

[tex]\sin x=0\text{ or } \sin x+1=0[/tex]

Recall that sine equals 0 at 0 radians. This will repeat every π radians. So:

[tex]x=n\pi, n\in\mathbb{Z}[/tex]

(Where n is an integer).

In the second case, we have:

[tex]\sin x=-1[/tex]

This occurs at 3π/2 and will repeat every cycle or 2π. Hence:

[tex]\displaystyle x=\frac{3\pi}{2}+2n\pi, n\in\mathbb{Z}[/tex]

Our solution is:

[tex]\displaystyle x=\left\{n\pi, \frac{3\pi}{2}+2n\pi \right\}, n\in\mathbb{Z}[/tex]

Notes:

In the interval [0, 2π), the solutions are:

[tex]\displaystyle x=\left\{0,\pi, \frac{3\pi}{2}\right\}[/tex]