Respuesta :

Answer:

Angle A = 41, Arc CE = 42, Angle C = 41, Angle D = 40, Angle ABE = 61

Step-by-step explanation:

Angle A = Arc BD/2  (Inscribed Angle)

Angle A = 82/2

Angle A = 41

Arc CE = 2 x Angle CEB (Inscribed Angle)

Arc CE = 2 x 21

Arc CE = 42

Angle C = Arc BD/2 (Inscribed Angle)

Angle C = 82/2

Angle C = 41

Angle D = Arc AC/2  (Inscribed Angle)

Angle D = 80/2

Angle D = 40

Angle ABE = Arc AE/2

Angle ABE = Arc AC + Arc CE/2

Angle ABE = 122/2

Angle ABE = 61

m < A =  [tex]39^{0}[/tex] , mCE =  [tex]40^{0}[/tex], m < c = [tex]39^{0}[/tex], m < D = [tex]37^{0}[/tex] m < ABE = [tex]57^{0}[/tex]

What are angles in a circle ?

A circle has a total of 360 degrees all the way around the center, so if that central angle determining a sector has an angle measure of 60 degrees, then the sector takes up 60/360 or 1/6, of the degrees all the way around.

a. m < A = [tex]\frac{1}{2}[/tex] mBD

= [tex]\frac{1}{2}[/tex] × [tex]78^{0}[/tex]

= [tex]39^{0}[/tex]

b. mCE = 2m < CBE

= 2 × [tex]20^{0}[/tex]

= [tex]40^{0}[/tex]

c. m < c = m < A = [tex]39^{0}[/tex]

d. m < D = [tex]\frac{1}{2}[/tex] mAC

= [tex]\frac{1}{2}[/tex] × [tex]74^{0}[/tex]

= [tex]37^{0}[/tex]

e. m < ABE = [tex]\frac{1}{2}[/tex] mAC + [tex]\frac{1}{2}[/tex] mCE

= [tex]37^{0}[/tex] + [tex]20^{0}[/tex]

= [tex]57^{0}[/tex]

Hence, m < A =  [tex]39^{0}[/tex] , mCE =  [tex]40^{0}[/tex], m < c = [tex]39^{0}[/tex], m < D = [tex]37^{0}[/tex] m < ABE = [tex]57^{0}[/tex]

Learn more about angles in a circle here

https://brainly.com/question/23247585

#SPJ2