Using and spectrophotometer, you measure 2 dilutions of NADH, and get absorbance values of 0.4 for sample A, and 0.2 for sample B. You know that the path length is 1 cm, and the extinction coefficient for NADH is 6220 (L Morcm). Using the Lambert-Beer Law equation (below), calculate the concentrations of sample A Select] and Sample B (Select ] A = log10 () = Ecl Where: A- Absorbance C- Concentration (mol 1 - Path length (cm) E = molar decadic extinction coefficient L mol. cm 1o - Intensity of the incident light 1 - Intensity of the transmitted Night

Respuesta :

Answer:

The answer is "The concentration sample A= 0.00006[tex]\frac{mol}{L}[/tex] and concentration of sample B is 0.00003[tex]\frac{mol}{L}[/tex]".  

Explanation:

Length of path [tex](l)=1 \ cm\\\\[/tex]

Coefficient extinction[tex](\varepsilon )=6220\ \frac{L}{Mol \ cm}\\\\[/tex]

Absorbace of sample [tex](A)=0.4\\\\[/tex]

Absorbace of sample [tex](B)=0.2\\\\[/tex]

For sample A:

[tex]A=\varepsilon cl\\\\0.4=6220 \times c \times 1\\\\c=\frac{0.4}{6220}\\\\[/tex]

   [tex]=0.00064\ \frac{mol}{L}[/tex]

For sample B:

[tex]A=\varepsilon cl\\\\0.2=6220 \times c \times 1\\\\c=\frac{0.2}{6220}\\\\[/tex]

   [tex]=0.00003\ \frac{mol}{L}[/tex]