Answer: [tex]6x^2-2x+4[/tex]
Step-by-step explanation:
Given
The length of a rectangle is given by
[tex]l=2x^2-5x+5[/tex]
and the breadth is given by
[tex]w=x^2+4x-3[/tex]
Perimeter is the sum of the sides of rectangle
[tex]\therefore \text{Perimeter P= }2(2x^2-5x+5+x^2+4x-3)\\\Rightarrow P=2(3x^2-5x+4x+5-3)\\\Rightarrow P=2(3x^2-x+2)\\\Rightarrow P=6x^2-2x+4[/tex]
Thus, the perimeter is given by [tex]6x^2-2x+4[/tex].