Answer:
[tex]\mathbf{L(x)= ( - \dfrac{1}{3})x^3 + 45x^2 -200x +31000}[/tex]
Step-by-step explanation:
From the given information:
Let assume the population is denoted by L
The rate of change of the young adults per year given can be represented as;
[tex]\dfrac{dL}{dx}= -x^2 +90x - 200[/tex]
where;
x = 0 since 2010
[tex]dL = -x^2 +90x -200 dx[/tex]
[tex]L = \int( -x^2 +90x -200 ) \ dx[/tex]
[tex]L = - \dfrac{1}{3}x^3 + 45x^2 -200x +C[/tex]
here;
L(0) = 31000
∴
[tex]- \dfrac{1}{3}(0)^3 + 45(0)^2 -200(0)+C= 31000[/tex]
C = 31000
[tex]\mathbf{L(x)= ( - \dfrac{1}{3})x^3 + 45x^2 -200x +31000}[/tex]