A government agency estimates the number of young adults (ages 18 to 24) in a particular country to be 31,000 (in thousands) in 2010 and changing at the rate of −x2 + 90x − 200 thousand per year, where x is the number of years since 2010. Find a formula for the size of this population at any time x. [Hint: Keep all calculations in units of thousands.]

Respuesta :

Answer:

[tex]\mathbf{L(x)= ( - \dfrac{1}{3})x^3 + 45x^2 -200x +31000}[/tex]

Step-by-step explanation:

From the given information:

Let assume the population is denoted by L

The rate of change of the young adults per year given  can be represented as;

[tex]\dfrac{dL}{dx}= -x^2 +90x - 200[/tex]

where;

x = 0 since 2010

[tex]dL = -x^2 +90x -200 dx[/tex]

[tex]L = \int( -x^2 +90x -200 ) \ dx[/tex]

[tex]L = - \dfrac{1}{3}x^3 + 45x^2 -200x +C[/tex]

here;

L(0) = 31000

[tex]- \dfrac{1}{3}(0)^3 + 45(0)^2 -200(0)+C= 31000[/tex]

C = 31000

[tex]\mathbf{L(x)= ( - \dfrac{1}{3})x^3 + 45x^2 -200x +31000}[/tex]