Answer:
[tex]Pr(Odd\ or\ <4) = \frac{2}{3}[/tex]
Step-by-step explanation:
Given
[tex]S = \{1,2,3,4,5,6\}[/tex] --- roll of a die
[tex]n(S) = 6[/tex] ---- the sample size
[tex]Odd = \{1,3,5\}[/tex]
[tex]<4 = \{1,2,3\}[/tex]
Required
[tex]Pr(Odd\ or\ <4)[/tex]
First, list out the event of odd or <4
[tex]Odd\ or\ <4 = \{1,2,3,5\}[/tex]
So, the probability is:
[tex]Pr(Odd\ or\ <4) = \frac{n(Odd\ or\ <4)}{n(S)}[/tex]
[tex]Pr(Odd\ or\ <4) = \frac{4}{6}[/tex]
Simplify
[tex]Pr(Odd\ or\ <4) = \frac{2}{3}[/tex]