This Question: 1 pt
1 of 20 (0 complete)
ZEFG and ZGFH are a linear pair, m ZEFG = 3n + 19, and mZGFH = 2n + 36. What are mZEFG and mZGFH?
mZEFG =
mZGFH =]
(Simplify your answers.)

This Question 1 pt 1 of 20 0 complete ZEFG and ZGFH are a linear pair m ZEFG 3n 19 and mZGFH 2n 36 What are mZEFG and mZGFH mZEFG mZGFH Simplify your answers class=

Respuesta :

[tex]\huge{ \mathfrak{  \underline{ Answer }\:  \:  ✓ }}[/tex]

Angles forming linear pair are :

[tex] \mathrm{\angle EFG \: \: and \: \: \angle GFH} [/tex]

And we know, they are supplymentary

  • [tex] \mathrm{\angle EFG \: + \: \angle GFH} = 180 \degree[/tex]
  • [tex]3n +1 9 \degree+ 2n + 36\degree = 180 \degree[/tex]
  • [tex]5n + 55\degree = 180\degree[/tex]
  • [tex]5n = 125\degree[/tex]
  • [tex]n = 25\degree[/tex]

So, the measures of the given angles are :

  • [tex] \mathrm{\angle EFG } = 3n + 19[/tex]
  • [tex] \mathrm{ \angle EFG = (3 \times 25\degree) + 19}[/tex]
  • [tex] \mathrm{ \angle EFG = 75 \degree+ 19\degree}[/tex]
  • [tex]\mathrm{ \angle EFG = 94\degree}[/tex]

And

  • [tex]\mathrm{ \angle GFH = 2n + 36}[/tex]
  • [tex]\mathrm{ \angle GFH = (2 \times 25\degree) + 36\degree}[/tex]
  • [tex]\mathrm{ \angle GFH = 50\degree + 36\degree}[/tex]
  • [tex]\mathrm{ \angle GFH = 86\degree }[/tex]

_____________________________

[tex]\mathrm{ ☠ \: TeeNForeveR \:☠ }[/tex]