Answer:
[tex]D = (-4,-9)[/tex]
Step-by-step explanation:
Given
[tex]C =(2,7)[/tex]
[tex]M=(-1,-1)[/tex]
Required
The coordinates of D
Represent D with:
[tex]D = (x_2,y_2)[/tex]
Using midpoint formula, we have:
[tex]M(x,y) = \frac{1}{2}(x_1 + x_2, y_1 + y_2)[/tex]
So, we have:
[tex](-1,-1) = \frac{1}{2}(2 + x_2, 7 + y_2)[/tex]
Multiply both sides by 2
[tex](-2,-2) = (2 + x_2, 7 + y_2)[/tex]
Compare both sides
[tex]2 + x_2 = -2[/tex]
[tex]7 + y_2 =-2[/tex]
In [tex]2 + x_2 = -2[/tex], we have:
[tex]x_2 =-2-2[/tex]
[tex]x_2 =-4[/tex]
In [tex]7 + y_2 =-2[/tex], we have:
[tex]y_2 = -2 - 7[/tex]
[tex]y_2 = -9[/tex]
So, the coordinates of D is:
[tex]D = (x_2,y_2)[/tex]
[tex]D = (-4,-9)[/tex]