Respuesta :

Answer:

[tex]D = (-4,-9)[/tex]

Step-by-step explanation:

Given

[tex]C =(2,7)[/tex]

 [tex]M=(-1,-1)[/tex]

Required

The coordinates of D

Represent D with:

[tex]D = (x_2,y_2)[/tex]

Using midpoint formula, we have:

[tex]M(x,y) = \frac{1}{2}(x_1 + x_2, y_1 + y_2)[/tex]

So, we have:

[tex](-1,-1) = \frac{1}{2}(2 + x_2, 7 + y_2)[/tex]

Multiply both sides by 2

[tex](-2,-2) = (2 + x_2, 7 + y_2)[/tex]

Compare both sides

[tex]2 + x_2 = -2[/tex]

[tex]7 + y_2 =-2[/tex]

In [tex]2 + x_2 = -2[/tex], we have:

[tex]x_2 =-2-2[/tex]

[tex]x_2 =-4[/tex]

In [tex]7 + y_2 =-2[/tex], we have:

[tex]y_2 = -2 - 7[/tex]

[tex]y_2 = -9[/tex]

So, the coordinates of D is:

[tex]D = (x_2,y_2)[/tex]

[tex]D = (-4,-9)[/tex]