Respuesta :
[tex]\huge{ \mathcal{ \underline{ Answer} \: \: ✓ }}[/tex]
The given values are :
- height (h) = 8 in
- radius (r) = 5 in
We know,
[tex] \large\boxed{ \mathrm{slant \: \: height} = \sqrt{h {}^{2} + r {}^{2} } }[/tex]
- [tex]l = \sqrt{ {h}^{2} + r {}^{2} } [/tex]
- [tex]l = \sqrt{8 {}^{2} + {5}^{2} } [/tex]
- [tex]l = \sqrt{64 + 25} [/tex]
- [tex]l = \sqrt{89}[/tex]
Now,
[tex] \large \boxed{\mathrm{lateral \: \: surface \: \:a rea } = \mathrm{\pi rl}}[/tex]
- [tex]\pi \times 5 \times \sqrt{89} [/tex]
- [tex] \mathrm{5\pi \sqrt{89 } \: \: in {}^{2} }[/tex]
Therefore the correct answer is :
D. 5π√89 in²
_________________________
[tex]\mathrm{ ☠ \: TeeNForeveR \:☠ }[/tex]
The lateral surface area of the cone with a radius 5 inches and height 8 inch is 5(√89)π square inches
How to calculate the lateral area of the cone?
The formula for calculating the lateral area of the cone is expressed as:
V = 1/3πr²h
where:
- r is the radius
- h is the height
Given the following
r = 5in
h = 8n
Substitute
L = πrl
L = 5π(√8^2+5^2)
L = 5π(√89)
Hence the lateral surface area of the cone with a radius 5 inches and height 8 inch is 5(√89)π square inches
Learn more on lateral area here: https://brainly.com/question/1601740