Answer:
The answer is "[tex]0.45 \pm 0.18204[/tex]"
Step-by-step explanation:
For the +4 sample proportion[tex]= \frac{(7+2)}{(16+4)} = \frac{9}{20} = 0.45[/tex]
Sample percentage measurements estimated stdev
[tex]= \sqrt{\frac{[(0.45)(1-0.45)]}{[(16+4)]}}\\\\ = \sqrt{\frac{[(0.45)(0.55)]}{[(20)]}}\\\\ = \sqrt{\frac{0.2475}{20}}\\\\= \sqrt{0.012375}\\\\=0.111[/tex]
Calculating the critical z for a=0.1, two-tailed = 1.64
Calculating the confidence interval:
[tex]= 0.45 \pm 0.111 \times 1.64 \\\\= 0.45 \pm 0.18204[/tex]