Answer:
Midpoint of AC = (-1, 1)
Midpoint of BC = (1, -2)
Length of the midsegment = [tex]\sqrt{13}[/tex]
Step-by-step explanation:
Vertices of a triangle ABC are A(0, 5), B(4, -1) and C(-2, -3).
Midpoint of segment AC = [tex]\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}[/tex]
= [tex](\frac{0-2}{2},\frac{5-3}{2})[/tex]
= (-1, 1)
Midpoint of BC = [tex](\frac{4-2}{2},\frac{-1-3}{2})[/tex]
= [tex](1,-2)[/tex]
Length of the mid segment = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
= [tex]\sqrt{(-1-1)^2+(-2-1)^2}[/tex]
= [tex]\sqrt{4+9}[/tex]
= [tex]\sqrt{13}[/tex]