Respuesta :

Answer:

Option (2)

Step-by-step explanation:

Given geometric sequence is,

2, 5, 12.5, 31.25, 78.125......

First term = a₁ = 2

Common ratio of the sequence = r = [tex]\frac{5}{2}[/tex]

                                                          = 2.5

Recursive formula of a geometric sequence is given by,

[tex]a_n=a_{n-1}(r)[/tex]

Here, [tex]a_n=[/tex] nth term of the sequence

[tex]a_{n-1}=[/tex] (n - 1)th term

r = common ratio

Therefore, recursive formula for the given sequence will be,

[tex]a_1=2[/tex]

[tex]a_n=a_{n-1}(2.5)[/tex]

Explicit formula of a geometric sequence is given by,

[tex]a_n=a_1(r)^{n-1}[/tex]

Therefore, explicit formula of the sequence will be,

[tex]a_n=2(2.5)^{n-1}[/tex]

Option (2) will be the correct option.