A satellite of mass m is orbiting Earth in a stable circular orbit of radius R. The mass and radius of Earth are ME and RE , respectively. Express your answers to parts (a), (b), and (c) the following in terms of m, R, ME , RE , and physical constants, as appropriate.

a. Derive an expression for the speed of the satellite in its orbit.
b. Derive an expression for the total mechanical energy of the satellite-Earth system in its orbit.
c. Derive an expression for the period of the satellite’s orbit.

Respuesta :

Answer:

a)   v = [tex]\sqrt{G \frac{M_e}{(R+R_e)} }[/tex],   b)  Em = - ½ m [tex]G \frac{M_e}{(R+R_e)}[/tex], c)  T = 2π [tex]\sqrt{\frac{ (R+R_e)^3 }{G M_e } }[/tex]

Explanation:

a) For this exercise we must use Newton's second law with the gravitational force

          F = ma

          [tex]G \frac{m M_e}{(R+R_e)^2 }[/tex] = m a

the acceleration of the satellite is centripetal

          a = [tex]\frac{v^2}{(R+R_e)}[/tex]

we substitute

            [tex]G \frac{m M_e}{(R+R_e)^2 } = m \frac{v^2}{ (R+R_e)}[/tex]

          [tex]G \frac{M_e}{(R+R_e)}[/tex]  = v²

          v = [tex]\sqrt{G \frac{M_e}{(R+R_e)} }[/tex]

the distance is from the center of the earth

b) mechanical energy is the sum of kinetic energy plus potential energy

         Em = K + U

         Em = ½ m v² - G m M / (R + R_e)

we substitute the expression for the velocity

         Em = ½ m  [tex]G \frac{M_e}{(R+R_e)}[/tex]  - [tex]G \frac{M_e}{(R+R_e)}[/tex]  

         Em = - ½ m [tex]G \frac{M_e}{(R+R_e)}[/tex]  

c) as the orbit is circulating, the velocity modulus is constant

         v = d / t

in a complete orbit the distance traveled of the circle is

        d = 2π (R + R_e)

where time is called period

         v = 2π (R + R_e)

         T = 2π (R + R_e) / v

we substitute the speed value

        T = 2π (R + R_e) [tex]\sqrt{\frac{(R+R_e) }{G M_e } }[/tex]

        T = 2π [tex]\sqrt{\frac{ (R+R_e)^3 }{G M_e } }[/tex]

(a) An expression for the speed of the satellite in its orbit.

[tex]V=\sqrt{G\dfrac{M_e}{R+R_e}[/tex]

(b) An expression for the total mechanical energy of the satellite-Earth system in its orbit.

[tex]E_m =\dfrac{1}{2}mG\dfrac{M_e}{(R+R_e)}[/tex]

(c) An expression for the period of the satellite’s orbit.

[tex]T=2\pi\sqrt\dfrac{(R+R_e)^3}{GM_e}[/tex]

What are satellites?

A satellite is a moon, planet or machine that orbits a planet or star. For example, Earth is a satellite because it orbits the sun

a) For this exercise we must use Newton's second law with the gravitational force

F = ma

[tex]ma =G\sqrt{\dfrac{mM_e}{(R+R_e)}[/tex]

the acceleration of the satellite is centripetal

[tex]a=\dfrac{v^2}{R+R_e}[/tex]

we substitute

[tex]G\dfrac{mM_e}{(R+R_e)}=m\dfrac{v^2}{(R+R_e)}[/tex]

[tex]G\dfrac{M_e}{(R+R_e)}=v^2[/tex]

[tex]v=\sqrt{G\dfrac{M_e}{(R+R_e)}[/tex]

b) mechanical energy is the sum of kinetic energy plus potential energy

        Em = K + U

[tex]Em =\dfrac{1}{2}m v^2 - \dfrac{G m M} {(R + R_e)}[/tex]

we substitute the expression for the velocity

[tex]E_m=\dfrac{1}{2}mG\dfrac{M_e}{(R+R_e)}-G\dfrac{M_e}{(R+R_e)}[/tex]

[tex]E_m=-\dfrac{1}{2}G\dfrac{M_e}{(R+R_e)}[/tex]

c) as the orbit is circulating, the velocity modulus is constant

[tex]v=\dfrac{d}{t}[/tex]  

in a complete orbit the distance traveled of the circle is

[tex]d = 2\pi (R + R_e)[/tex]

where time is called period

[tex]v = 2\pi (R + R_e)[/tex]

[tex]T = \dfrac{2\pi (R + R_e)} { v}[/tex]

we substitute the speed value

[tex]T = 2\pi (R + R_e) . \sqrt{\dfrac{(R+R_e)}{GM_e}[/tex]

[tex]T=2\pi\sqrt{\dfrac{(R+R_e)}{GM_e}[/tex]

(a) An expression for the speed of the satellite in its orbit.

[tex]V=\sqrt{G\dfrac{M_e}{R+R_e}[/tex]

(b) An expression for the total mechanical energy of the satellite-Earth system in its orbit.

[tex]E_m =\dfrac{1}{2}mG\dfrac{M_e}{(R+R_e)}[/tex]

(c) An expression for the period of the satellite’s orbit.

[tex]T=2\pi\sqrt\dfrac{(R+R_e)^3}{GM_e}[/tex]

To know more about satellites follow

https://brainly.com/question/18496962

ACCESS MORE
EDU ACCESS