Answer:
[tex]c=10x^2+22x-16\\A=6x^4+28x^3+14x^2-48x[/tex]
Step-by-step explanation:
Given
Length is [tex]l=3x^2+5x-8[/tex]
Width is [tex]w=2x^2+6x[/tex]
Perimeter of the rectangle is the sum of the sides
[tex]\Rightarrow c=2(3x^2+5x-8+2x^2+6x)\\\Rightarrow c=2(5x^2+11x-8)\\\Rightarrow c=10x^2+22x-16[/tex]
Area is given by
[tex]\Rightarrow A=(3x^2+5x-8)(2x^2+6x)\\\Rightarrow A=6x^4+18x^3+10x^3+30x^2-16x^2-48x\\\Rightarrow A=6x^4+28x^3+14x^2-48x[/tex]