Respuesta :
Answer:
a) [tex]\frac{dE}{dt}=\frac{q^2a^2}{4\pi E_0C^3}[/tex]
b) [tex]x=\frac{6.0}{4.3*10^{-32}}[/tex]
c) [tex]x'=\frac{6.0}{2.22*10^{-3}}[/tex]
Explanation:
From the question we are told that:
Kinetic energy of Proton[tex]K.E_p= 6.0 MeV[/tex]
Radius [tex]r=0.750[/tex]
Energy [tex]\frac{dE}{dt}=\frac{q^2a^2}{4\pi E_0C^3}[/tex]
a)
[tex]\frac{dE}{dt}=\frac{q^2a^2}{4\pi E_0C^3}[/tex]
b)
Generally the equation for acceleration of proton is mathematically given by
[tex]a_p=\frac{v^2}{r}[/tex]
Where
Speed of Proton particle is
[tex]V_p=2.12 *10^3 m/s[/tex]
[tex]a_p=\frac{(2.12 *10^3)^2}{0.750}\\a_p=1.27*10^{10}m/s^2[/tex]
Therefore
[tex]\frac{dE}{dt}=\frac{q^2a^2}{4\pi E_0C^3}[/tex]
[tex]\frac{dE}{dt}=\frac{9*10^9*(1.6*10^{-19}^2*(1.27*10^{10})^2)}{(3*10^8)^3}[/tex]
[tex]\frac{dE}{dt}=6.881810^{-51}J/s[/tex]
Energy radiated per sec
[tex]mev=\frac{6.881810^{-51}}{1.6*10^{-19}}\\mev=4.3*10^{-32}ev[/tex]
Therefore the Fraction of its energy it radiates per second is given as
[tex]x=\frac{ K.E_p}{mev}\\[/tex]
[tex]x=\frac{6.0}{4.3*10^{-32}}[/tex]
c)
Generally the equation for acceleration of proton is mathematically given by
[tex]a_p=\frac{v^2}{r}[/tex]
Where
Speed of Proton particle is
[tex]V_p=2.5 *10^7 m/s[/tex]
[tex]a_p=\frac{(2.5 *10^7)^2}{0.750}\\a_p=0.33*10^{14}m/s^2[/tex]
Therefore
[tex]\frac{dE}{dt}=\frac{q^2a^2}{4\pi E_0C^3}[/tex]
[tex]\frac{dE}{dt}=\frac{9*10^9*(1.6*10^{-19}^2*(0.33*10^{14})^2)}{(3*10^8)^3}[/tex]
[tex]\frac{dE}{dt}=59.26^{-25}J/s[/tex]
Energy radiated per sec
[tex]mev=\frac{59.26^{-25}}{1.6*10^{-19}}\\mev=2.22*10^{-3}ev[/tex]
Therefore the Fraction of its energy it radiates per second is given as
[tex]x'=\frac{ K.E_p}{mev}\\[/tex]
[tex]x'=\frac{6.0}{2.22*10^{-3}}[/tex]
