Answer:
The right solution according to the question is provided below.
Explanation:
According to the question,
(a)
The initial conditions will be:
DO = [tex]\frac{(40\times 1.8)+(260\times 7.6)}{40+260}[/tex]
= [tex]\frac{2048}{300}[/tex]
= [tex]6.826 \ mg/L[/tex]
The initial oxygen defict will be:
Do = [tex]8.5-6.826[/tex]
= [tex]1.674 \ mg/L[/tex]
The initial BOD will be:
Lo = [tex]\frac{(40\times 25)+(260\times 3.6)}{40+260}[/tex]
= [tex]\frac{1936}{300}[/tex]
= [tex]6.453 \ mg/L[/tex]
(b)
The time reach minimum DO:
tc = [tex]\frac{1}{(kr-kd)} ln{(\frac{0.76}{0.61} )[1-\frac{1.674(0.76-0.61)}{0.61\times 6.453} ]}[/tex]
= [tex]\frac{1}{0.15}\times ln \ 1.158[/tex]
By putting the values of log, we get
= [tex]0.973 \ days[/tex]
The distance to reach minimum DO will be:
Xc = [tex]\frac{1.1\times 3600\times 24}{5280}\times 0.973 \ days[/tex]
= [tex]18\times 0.973[/tex]
= [tex]17.5 \ miles[/tex]