Chord \displaystyle \overline{AB} AB is 12 inches from center \displaystyle OO. If the radius has a length of \displaystyle 1515 inches, find the length of chord \displaystyle \overline{AB} AB .

Respuesta :

Answer:

18 inches

Step-by-step explanation:

Given

[tex]r = 15in[/tex] --- radius

[tex]h = 12in[/tex] --- distance between chord and the center of the circle

Required

The chord length

See attachment for illustration

First, calculate distance AX using Pythagoras theorem.

[tex]AO^2 = AX^2 + OX^2[/tex]

This gives:

[tex]15^2 = AX^2 + 12^2[/tex]

[tex]225 = AX^2 + 144[/tex]

Collect like terms

[tex]AX^2 = 225 - 144[/tex]

[tex]AX^2 = 81[/tex]

Take square roots of both sides

[tex]AX = 9[/tex]

AB is then calculated as:

[tex]AB= AX + XB[/tex]

Where:

[tex]AX=XB =9[/tex]

So:

[tex]AB = 9 + 9[/tex]

[tex]AB = 18[/tex]

Ver imagen MrRoyal
RELAXING NOICE
Relax