Answer:
18 inches
Step-by-step explanation:
Given
[tex]r = 15in[/tex] --- radius
[tex]h = 12in[/tex] --- distance between chord and the center of the circle
Required
The chord length
See attachment for illustration
First, calculate distance AX using Pythagoras theorem.
[tex]AO^2 = AX^2 + OX^2[/tex]
This gives:
[tex]15^2 = AX^2 + 12^2[/tex]
[tex]225 = AX^2 + 144[/tex]
Collect like terms
[tex]AX^2 = 225 - 144[/tex]
[tex]AX^2 = 81[/tex]
Take square roots of both sides
[tex]AX = 9[/tex]
AB is then calculated as:
[tex]AB= AX + XB[/tex]
Where:
[tex]AX=XB =9[/tex]
So:
[tex]AB = 9 + 9[/tex]
[tex]AB = 18[/tex]