Respuesta :

Answer:

Option 2 : m∠1 = 67.4°, m∠2 = 104.5°

Step-by-step explanation:

Lets find the measure of angle 2 first:

180° - 17.3° - (180° - 121.8°) = Angle 2

                             ↑

             Angle of the straight line = 180°

             The angle should be 180 - 121.8

Angle 2 = 104.5

At this point the only answer that works is the second option, but let's still work out Angle 1

Angle 1 :

Theory of opposite angles state that the opposite angles inside a triangle = the exterior angle

in this case:

Angle 1 + 37.1 = Angle 2

Since we know angle 2 = 104.5, lets solve

Lets say angle 1 = x

x + 37.1 = 104.5

x = 104.5 - 37.1

x = 67.4

If my answer is incorrect, pls correct me!

If you like my answer and explanation, mark me as brainliest!

-Chetan K

To find:-

The measures of 1 and 2.

Solution:-

[tex]{\boxed{\mathcal{\red{Angle\: 1 \:=\: 67.4° \:}}}}[/tex]✅

[tex]{\boxed{\mathcal{\red{Angle\: 2\:=\:104.5° \:}}}}[/tex]✅

Step-by-step explanation:-

We know that,

[tex]\sf\purple{Sum\:of\:angles\:on\:a\:straight\:line\:=\:180°}[/tex]

x + 121.8° = 180°

x = 180° - 121.8°

x = 58.2°

Now,

[tex]\sf\pink{Sum\:of\:angles\:of\:a\:triangle\:=\:180°}[/tex]

∠ 2 + 17.3° + 58.2° = 180°

➪ ∠ 2 + 75.5° = 180°

➪ ∠ 2 = 180° - 75.5°

➪ ∠ 2 = 104.5°

[tex]\boxed{Therefore,\:the\:measure\:of\:∠\:2\:is\:104.5°.}[/tex]

Again,

[tex]\sf\blue{Sum\:of\:angles\:on\:a\:straight\:line\:=\:180°}[/tex]

2 + y = 180°

104.5° + y = 180°

y = 180° - 104.5°

y = 75.5°

Finally, we have

[tex]\sf\pink{Sum\:of\:angles\:of\:a\:triangle\:=\:180°}[/tex]

⇢  1 + 75.5° + 37.1° = 180°

⇢  1 + 112.6° = 180°

⇢  1 = 180° - 112.6°

⇢  1 = 67.4°

[tex]\boxed{Therefore,\:the\:measure\:of\:∠\:1\:is\:67.4°.}[/tex]

[tex]\bold{ \green{ \star{ \orange{Hope\:it\:helps.}}}}⋆[/tex]

Ver imagen Аноним
ACCESS MORE
EDU ACCESS
Universidad de Mexico