Answer:
[tex]\displaystyle f(x)=\frac{10}{169}\left(x-8\right)^2-1[/tex]
Step-by-step explanation:
We can use the vertex form of a quadratic, which is given by:
[tex]\displaystyle f(x)=a(x-h)^2+k[/tex]
Where (h, k) is the vertex.
Since we are given that the vertex is (8, -1), h = 8 and k = -1. Substitute:
[tex]f(x)=a(x-8)^2-1[/tex]
Next, we are given that the parabola passes through the point (-5, 9). So, when x = -5, y = 9:
[tex]9=a((-5)-8)^2-1[/tex]
Solve for a:
[tex]9=a(-13)^2-1[/tex]
So:
[tex]\displaystyle a=\frac{10}{169}[/tex]
So, the equation of our parabola is:
[tex]\displaystyle f(x)=\frac{10}{169}\left(x-8\right)^2-1[/tex]
Answer:
The equation of our parabola would be:
f(x) = 10/169(x - 8)[tex]^{2}[/tex] - 1