Respuesta :
Answer: [tex]21,022,706.3\ m^2/hr[/tex]
Step-by-step explanation:
Given
The rate of change of perimeter of a square is increasing at a rate of [tex]555\ m^3/hr[/tex]
At a certain instant, the perimeter is [tex]303030\ m[/tex]
At this instant side of square is
[tex]\Rightarrow a=\dfrac{303030}{4}\\\\\Rightarrow a=75,757.5\ m[/tex]
Rate of change of perimeter is
[tex]\Rightarrow \dfrac{dp}{dt}=4\dfrac{da}{dt}\\\\\Rightarrow 555=4\dfrac{da}{dt}\\\\\Rightarrow \dfrac{da}{dt}=138.75\ m/hr[/tex]
At this instant, rate of change of the area of the square is
[tex]\Rightarrow A=a^2\\\Rightarrow \dfrac{dA}{dt}=2a\dfrac{da}{dt}\\\\\Rightarrow \dfrac{dA}{dt}=2\times 75757.5\times 138.75\\\\\Rightarrow \dfrac{dA}{dt}=21,022,706.3\ m^2/hr[/tex]