Respuesta :

Answer:

[tex]c = \frac{1}{4}m+ 15[/tex]

Step-by-step explanation:

Given

The attached graph

Required

The graph equation

Pick two points from the graph, we have:

[tex](m_1,c_1) = (0,15)[/tex]

[tex](m_2,c_2) = (40,25)[/tex]

Start by calculating the slope (a)

[tex]a = \frac{c_2 - c_1}{m_2 - m_1}[/tex]

So, we have:

[tex]a = \frac{25 - 15}{40 - 0}[/tex]

[tex]a = \frac{10}{40}[/tex]

[tex]a = \frac{1}{4}[/tex]

The equation is then calculated using:

[tex]c = a(m - m_1) + c_1[/tex]

So, we have:

[tex]c = \frac{1}{4}(m - 0) + 15[/tex]

[tex]c = \frac{1}{4}m+ 15[/tex]

RELAXING NOICE
Relax