Answer:
V = 40 km/h
Step-by-step explanation:
Total distance = 120 km
Constant speed of train = V km/h
⇒ [tex]Time \: taken \: by \: train = \frac{Distance}{Speed} = \frac{120}{V} \: hr[/tex]
Its given that if speed is reduced by 10 km/h , the time taken by train increases by 1 hour. BUT THE DISTANCE REMAINS SAME. So,
[tex]Speed \times Time = Distance[/tex]
[tex]=> (V - 10)(\frac{120}{V} + 1) = 120[/tex]
[tex]=> 120 + V - \frac{1200}{V} - 10 = 120[/tex]
[tex]=> V - \frac{1200}{V} - 10 = 0[/tex]
[tex]=> \frac{V^2 - 1200 - 10V}{V} = 0[/tex]
[tex]=> V^2 - 10V - 1200 = 0[/tex]
Factorise the quadratic equation.
[tex]=> V^2 - 40V + 30V - 1200[/tex]
[tex]=> V(V - 40) + 30(V - 40)[/tex]
[tex]=> (V - 40)(V + 30)[/tex]
[tex]=> V = 40 \: (or) \: -30[/tex]
Speed can't be negative. So , V = 40 km/h