Answer:
[tex]\frac{a^2 + b^2 +c ^2}{a*b + a*c + b*c} = -2[/tex]
Step-by-step explanation:
if:
a + b + c = 0
then we can rewrite:
c = -a - b
Now we can replace this in our expression:
[tex]\frac{a^2 + b^2 + c^2}{a*b + a*c + b*c} = \frac{a^2 + b^2 + (-a - b)^2}{a*b + a*(-a - b) + b*(-a - c)}[/tex]
Now we can rewrite:
(-a - b)^2 = a^2 + 2*a*b + b^2
Then we can rewrite our expression as:
[tex]\frac{a^2 + b^2 + a^2 + b^2 + 2*a*b}{a*b - a^2 - a*b - b^2 - b*a}[/tex]
Let's keep simplifying this:
[tex]\frac{2*(a^2 + b^2 + a*b)}{-a*b - b^2 - a^2}[/tex]
Here is easy to see the simplification we need to do, as we have the same factor in the denominator as in the numerator (just a different of sign).
[tex]\frac{2*(a^2 + b^2 + a*b)}{-a*b - b^2 - a^2} = \frac{2*(a^2 + b^2 + a*b)}{-(a^2 + b^2 + a*b)} = -2[/tex]
Then the expression is equal to -2
[tex]\frac{a^2 + b^2 +c ^2}{a*b + a*c + b*c} = -2[/tex]