Answer:
C. 8/25 - 19/25i
Step-by-step explanation:
Given that:
[tex]\dfrac{4-i}{3+4i}[/tex]
[tex]= \dfrac{(4-i) (3-4i)}{(3+4i)(3-4i)}[/tex]
[tex]= \dfrac{(4-i) (3-4i)}{(3+4i)(3-4i)} \\ \\ =\dfrac{12 -16i -3i+4i^2}{9 - 12i +12i -16i^2} \\ \\ = \dfrac{12-19i+4i^2}{9-16i^2} \\ \\ = \dfrac{8-19i}{25}[/tex]
[tex]=\dfrac{8}{25}- \dfrac{19i}{25}[/tex]