Answer:
[tex]x=6+3\sqrt{2}[/tex] is the size of the square
Step-by-step explanation:
Let the side of the square cut from the cardboard be “x”
Size of the square base = [tex]12 -2x[/tex], height of the box = x
Volume of square box = Area * height = [tex](12-2x)^2 * x[/tex]
Differentiating the above equation and equating it to zero, we get –
d/dx [tex]((12-2x)^2 * x)[/tex]
d/dx[tex]{(144 + 4x^2 -48x)*x}[/tex]= d/dx [tex](144x + 4x^3 -48x^2)[/tex]
d/dx [tex](144x + 4x^3 -48x^2) = 0[/tex]
[tex]144+8x^2-96X= 0\\18 +X^2-12X = 0[/tex]
On solving above equation, we get –
[tex]x=6+3\sqrt{2} \\ x=6-3\sqrt{2}[/tex]