Answer:
Approximately [tex]2.46\; \rm mol[/tex].
Explanation:
Make use of the molar mass data ([tex]M({\rm C_2H_2}) = 26.04\; \rm g \cdot mol^{-1}[/tex]) to calculate the number of moles of molecules in that [tex]64.0\; \rm g[/tex] of [tex]\rm C_2H_2[/tex]:
[tex]\begin{aligned}n({\rm C_2H_2}) &= \frac{m({\rm C_2H_2})}{M} \\ &= \frac{64.0\; \rm g}{26.04\; \rm g\cdot mol^{-1}}\approx 2.46\; \rm mol\end{aligned}[/tex].
Make sure that the equation for this reaction is balanced.
Coefficient of [tex]\rm C_2H_2[/tex] in this equation: [tex]2[/tex].
Coefficient of [tex]\rm H_2O[/tex] in this equation: [tex]2[/tex].
In other words, for every two moles of [tex]\rm C_2H_2[/tex] that this reaction consumes, two moles of [tex]\rm H_2O[/tex] would be produced.
Equivalently, for every mole of [tex]\rm C_2H_2[/tex] that this reaction consumes, one mole of [tex]\rm H_2O[/tex] would be produced.
Hence the ratio: [tex]\displaystyle \frac{n({\rm H_2O})}{n({\rm C_2H_2})} = \frac{2}{2} = 1[/tex].
Apply this ratio to find the number of moles of [tex]\rm H_2O[/tex] that this reaction would have produced:
[tex]\begin{aligned}n({\rm H_2O}) &= n({\rm C_2H_2}) \cdot \frac{n({\rm H_2O})}{n({\rm C_2H_2})} \\ &\approx 2.46\; \rm mol \times 1 = 2.46\; \rm mol\end{aligned}[/tex].