Respuesta :

Answer:

Firs property used : Quotient Property

           [tex]log_b(\frac{X}{Y} ) = log_bX -log_bY[/tex]

   [tex]log_b(\frac{\sqrt[3]{x} }{36y^2} ) = log_b(\sqrt[3]{x}) - log_b(36y^2)[/tex]

Second property used : Product Property

          [tex]log_b(XY) = log_bX + log_b Y[/tex]

    [tex]log_b(\sqrt[3]{x}) - log_b(36y^2) = (log_b(\sqrt[3]{x}) - [log_b36 + log_by^2)[/tex]

Third property used : Power Property

                 [tex]log_b \sqrt[n]{X} = log_b(X)^{\frac{1}{n}} = \frac{1}{n} log_b X[/tex]

 [tex](log_b(\sqrt[3]{x}) - [log_b6^2 + log_by^2) = \frac{1}{3} log_bx - 2log_b 6 - 2log_by[/tex]

Fully expanded form:

                   [tex]log_b(\frac{\sqrt[3]{x} }{36y^2} ) = \frac{1}{3} log_b x-2log_b6-2log_by[/tex]

           

ACCESS MORE
EDU ACCESS