Respuesta :

Given:

[tex]f(y)=e^{9y}+e^{-9y}[/tex]

To find:

The f'(y).

Solution:

Chain rule of differentiation:

[tex][f(g(x))]'=f'(g(x))g'(x)[/tex]

Differentiation of exponential:

[tex]\dfrac{d}{dx}e^x=e^x[/tex]

We have,

[tex]f(y)=e^{9y}+e^{-9y}[/tex]

Differentiate with respect to y.

[tex]f'(y)=e^{9y}\dfrac{d}{dx}(9y)+e^{-9y}\dfrac{d}{dx}(-9y)[/tex]

[tex]f'(y)=e^{9y}\cdot 9(1)+e^{-9y}\cdot (-9)(1)[/tex]

[tex]f'(y)=9e^{9y}-9e^{-9y}[/tex]

Therefore, the differentiation of the given function is [tex]f'(y)=9e^{9y}-9e^{-9y}[/tex].

ACCESS MORE
EDU ACCESS
Universidad de Mexico