Given:
[tex]f(y)=e^{9y}+e^{-9y}[/tex]
To find:
The f'(y).
Solution:
Chain rule of differentiation:
[tex][f(g(x))]'=f'(g(x))g'(x)[/tex]
Differentiation of exponential:
[tex]\dfrac{d}{dx}e^x=e^x[/tex]
We have,
[tex]f(y)=e^{9y}+e^{-9y}[/tex]
Differentiate with respect to y.
[tex]f'(y)=e^{9y}\dfrac{d}{dx}(9y)+e^{-9y}\dfrac{d}{dx}(-9y)[/tex]
[tex]f'(y)=e^{9y}\cdot 9(1)+e^{-9y}\cdot (-9)(1)[/tex]
[tex]f'(y)=9e^{9y}-9e^{-9y}[/tex]
Therefore, the differentiation of the given function is [tex]f'(y)=9e^{9y}-9e^{-9y}[/tex].