Respuesta :
Answer:
[tex] \displaystyle \begin{cases} \displaystyle {x} _{1} = - p \\ \displaystyle x _{2} = - q \end{cases}[/tex]
Step-by-step explanation:
we would like to solve the following equation for x:
[tex] \displaystyle \frac{1}{p} + \frac{1}{q} + \frac{1}{x} = \frac{1}{p + q + x} [/tex]
to do so isolate [tex]\frac{1}{x}[/tex] to right hand side and change its sign which yields:
[tex] \displaystyle \frac{1}{p} + \frac{1}{q} = \frac{1}{p + q + x} - \frac{1}{x} [/tex]
simplify Substraction:
[tex] \displaystyle \frac{1}{p} + \frac{1}{q} = \frac{x - (q + p + x)}{x(p + q + x)} [/tex]
get rid of only x:
[tex] \displaystyle \frac{1}{p} + \frac{1}{q} = \frac{ - (q + p )}{x(p + q + x)} [/tex]
simplify addition of the left hand side:
[tex] \displaystyle \frac{q + p}{pq} = \frac{ - (q + p )}{x(p + q + x)} [/tex]
divide both sides by q+p Which yields:
[tex] \displaystyle \frac{1}{pq} = \frac{ -1}{x(p + q + x)} [/tex]
cross multiplication:
[tex] \displaystyle x(p + q + x) = - pq[/tex]
distribute:
[tex] \displaystyle xp + xq + {x}^{2} = - pq[/tex]
isolate -pq to the left hand side and change its sign:
[tex] \displaystyle xp + xq + {x}^{2} + pq = 0[/tex]
rearrange it to standard form:
[tex] \displaystyle {x}^{2} + xp + xq + pq = 0[/tex]
now notice we end up with a quadratic equation therefore to solve so we can consider factoring method to use so
factor out x:
[tex] \displaystyle x( {x}^{} + p ) + xq + pq = 0[/tex]
factor out q:
[tex] \displaystyle x( {x}^{} + p ) +q (x + p)= 0[/tex]
group:
[tex] \displaystyle ( {x}^{} + p ) (x + q)= 0[/tex]
by Zero product property we obtain:
[tex] \displaystyle \begin{cases} \displaystyle {x}^{} + p = 0 \\ \displaystyle x + q= 0 \end{cases}[/tex]
cancel out p from the first equation and q from the second equation which yields:
[tex] \displaystyle \begin{cases} \displaystyle {x}^{} = - p \\ \displaystyle x = - q \end{cases}[/tex]
and we are done!