Respuesta :

Answer:

The demand reduces by $7.12 per month

Step-by-step explanation:

Given

[tex]p\to price[/tex]

[tex]x \to demand[/tex]

[tex]2x^2+5xp+50p^2=24800.[/tex]

[tex]p =10; \frac{dp}{dt} = 2[/tex]

Required

Determine the rate of change of demand

We have:

[tex]2x^2+5xp+50p^2=24800.[/tex]

Differentiate with respect to time

[tex]4x\frac{dx}{dt} + 5x\frac{dp}{dt} + 5p\frac{dx}{dt} + 100p\frac{dp}{dt} = 0[/tex]

Collect like terms

[tex]4x\frac{dx}{dt} + 5p\frac{dx}{dt} = -5x\frac{dp}{dt} - 100p\frac{dp}{dt}[/tex]

Factorize

[tex]\frac{dx}{dt}(4x + 5p) = -5(x + 20p)\frac{dp}{dt}[/tex]

Solve for dx/dt

[tex]\frac{dx}{dt} = -\frac{5(x + 20p)}{4x + 5p}\cdot \frac{dp}{dt}[/tex]

Given that: [tex]2x^2+5xp+50p^2=24800.[/tex] and [tex]p = 10[/tex]

Solve for x

[tex]2x^2 + 5x * 10 + 50 * 10^2 = 24800[/tex]

[tex]2x^2 + 50x + 5000 = 24800[/tex]

Equate to 0

[tex]2x^2 + 50x + 5000 - 24800 =0[/tex]

[tex]2x^2 + 50x -19800 =0[/tex]

Using a quadratic calculator, we have:

[tex]x \approx -113\ and\ x\approx88[/tex]

Demand must be greater than 0;

So: [tex]x=88[/tex]

So, we have: [tex]x=88[/tex]; [tex]p =10; \frac{dp}{dt} = 2[/tex]

The rate of change of demand is:

[tex]\frac{dx}{dt} = -\frac{5(88 + 20*10)}{4*88 + 5*10} * 2[/tex]

[tex]\frac{dx}{dt} = -\frac{5(288)}{402} * 2[/tex]

[tex]\frac{dx}{dt} = -\frac{2880}{402}[/tex]

[tex]\frac{dx}{dt} \approx -7.16[/tex]

This implies that the demand reduces by $7.12 per month

RELAXING NOICE
Relax