Respuesta :
Answer:
a. dS(t)/dt + [7S(t)/(300 - 5t)] = 1.2 with S(0) = 0.8
b. S(t) = [tex]\frac{120e^{\frac{7t}{100} } }{7}[/tex] - 16.34[tex]e^{-\frac{7t}{100}[/tex]
Step-by-step explanation:
a. Write an initial value problem for S(t), the amount of salt in the tank at time t. Do not solve the equation!!
The net mass flow rate of salt dS(t)/dt = mass flow in - mass flow out
mass flow in = concentration of flow in × flow rate in = 0.6 lb/gal × 2 gal/min = 1.2 lb/min
Let S(t) be the mass of salt in the tank at time, t. The concentration of salt in the tank at time, t, C(t) = S(t)/volume of tank at time t ,V
V = V₀ + (r - r')t where V₀ = initial volume of water in tank = 300 gal, r = volume flow rate in = 2 gal/min, r'= volume flow rate out = 7 gal/min and t = time
So, V = V₀ + (r - r')t
V = 300 + (2 - 7)t
V = 300 - 5t
So, C(t) = S(t)/V = S(t)/(300 - 5t) lb/gal
Now, mass flow rate out = concentration in tank × volume flow rate out = S(t)/(300 - 5t) lb/gal × 7 gal/min = 7S(t)/(300 - 5t) lb/min
So, dS(t)/dt = mass flow in - mass flow out
dS(t)/dt = 1.2 lb/min - 7S(t)/(300 - 5t) lb
dS(t)/dt = 1.2 - 7S(t)/(300 - 5t)
So, our differential equation is
dS(t)/dt + [7S(t)/(300 - 5t)] = 1.2 with S(0) = 0.8 since we initially have 0.8 lb of salt
b. Write an expression in terms of S for the amount of salt in the tank when the tank is one-quarter full.
When the tank is one-quarter full, V = volume of tank/4 = 400 gallons/4 = 100 gallons
We now solve our differential equation
dS(t)/dt + 7S(t)/100 = 1.2
Using the integrating factor method, I.F = [tex]e^{\int\limits{\frac{7}{100} \, dt } =[/tex] [tex]e^{\frac{7t}{100} }[/tex]
[tex]e^{\frac{7t}{100}[/tex]dS(t)/dt +
d[[tex]e^{\frac{7t}{100}[/tex]S(t)]/dt = 1.2
d[[tex]e^{\frac{7t}{100}[/tex]S(t)] = [1.2
integrating both sides, we have
∫d[[tex]e^{\frac{7t}{100}[/tex]S(t)] = ∫[1.2
Let u = 7t/100. So, du/dt = 7/100 and dt = 100du/7
∫[1.2[tex]e^{\frac{7t}{100}[/tex]]dt = ∫[1.2 × 100[tex]e^{u}[/tex]]du/7 = (120/7)∫
[tex]e^{\frac{7t}{100}[/tex]S(t) = [tex]\frac{120e^{\frac{7t}{100} } }{7}[/tex] + C
S(t) = [tex]\frac{120e^{\frac{7t}{100} } }{7}[/tex] ÷ [tex]e^{\frac{7t}{100}[/tex] + [tex]e^{-\frac{7t}{100}[/tex]
S(t) = [tex]\frac{120e^{\frac{7t}{100} } }{7}[/tex] + C[tex]e^{-\frac{7t}{100}[/tex]
From our initial condition, S(0) = 0.8. So,
S(0) = [tex]\frac{120e^{\frac{7(0)}{100} } }{7}[/tex] + C[tex]e^{-\frac{7(0)}{100}[/tex]
S(0) = [tex]\frac{120e^{\frac{0}{100} } }{7}[/tex] + C[tex]e^{-\frac{0}{100}[/tex]
S(0) = [tex]\frac{120e^{0}}{7}[/tex] + C[tex]e^{0}[/tex]
0.8 = [tex]\frac{120}{7}[/tex] + C
C = 0.8 - 120/7
C = 0.8 - 17.14
C = - 16.34
So,
S(t) = [tex]\frac{120e^{\frac{7t}{100} } }{7}[/tex] - 16.34[tex]e^{-\frac{7t}{100}[/tex]