Answer:
Following are the responses to the given question:
Step-by-step explanation:
Follows are the description of the null and alternative Hypothesis:
[tex]H_0: \mu = 148.4\\\\H_a: \mu \neq 148.4[/tex]
Region of rejection
[tex]\alpha = 0.01\\\\ df = 49\\\\[/tex]
Calculating the critical value:
[tex]t = \pm 2.68 \\\\H_0\ when\ t < -2.68 \ or\ t > 2.68[/tex]
Testing statistic values:
[tex]t = \frac{(\bar{x} - \mu)}{(\frac{s}{\sqrt{n}})}[/tex]
[tex]= \frac{(147.8 - 148.4)}{(\frac{2.3}{\sqrt{50}})}\\\\ = \frac{-0.6}{(\frac{2.3}{7.07})}\\\\= \frac{-0.6}{0.325}\\\\ = -1.846[/tex]
[tex]P-value = 0.0711[/tex]
[tex]P-value \geq 0.01,[/tex] fail to reject null hypothesis.
There are just not enough evidence of increases in surface times.