Write the differential equation that governs the motion of the damped mass-spring system, and find the solution that satisfies the initial conditions specified. Units are mks;
????
is the damping coefficient, with units of kg/sec.

m

Respuesta :

This question is incomplete, the complete question  is;

Write the differential equation that governs the motion of the damped mass-spring system, and find the solution that satisfies the initial conditions specified. Units are mks; γ is the damping coefficient, with units of kg/sec

m = 0.2, γ = 1.6 and k = 4

Initial displacement is 1 and initial velocity is -2

x" + _____ x' ____x = 0

x(t) =

Answer:

the solution that satisfies the initial conditions specified is;

x(t) = [tex]c_1e^{-4t}cos(2t)[/tex] + [tex]c_2e^{-4t}sin(2t)[/tex]

Explanation:

Given the data in the question ;

m = 0.2, γ = 1.6, k = 4

x(0) = 1, x'(0) = -2

Now, the differential equation that governs the motions of spring mass system is;

mx" + γx' + kx = 0

so we substitute

0.2x" + 1.6x' + 4x = 0

divide through by 0.2

x" + 8x' + 20x = 0

hence, characteristics equation will be;

m² + 8m + 20 = 0

we find m using; x = [ -b±√(b² - 4ac) ] / 2a

m = [ -8 ± √((8)² - 4(1 × 20 )) ] / 2(1)

m = [ -8 ± √( 64 - 80 ) ] / 2

m = [ -8 ± √-16 ) ] / 2

m = ( -8 ± 4i ) / 2

m = -4 ± 2i

Hence, the general solution of the differential equation is;

x(t) = [tex]c_1e^{-4t}cos(2t)[/tex] + [tex]c_2e^{-4t}sin(2t)[/tex]

From the initial conditions;

c₁ = 1, c₂ = 1

the solution that satisfies the initial conditions specified is;

x(t) = [tex]c_1e^{-4t}cos(2t)[/tex] + [tex]c_2e^{-4t}sin(2t)[/tex]

ACCESS MORE
EDU ACCESS