Respuesta :

Answer:

H = 0.7333333

Explanation:

Given that:

The memory access time ([tex]T_m[/tex]) = 150 ns

The cache access time [tex](T_c)[/tex] = 20 ns

Effective access time [tex](T_e)[/tex]  = 20% > [tex](T_c)[/tex]

Then, it implies that:

= [tex](T_c)[/tex] + 20% of

=[tex](T_c)[/tex](1+20%)

=[tex](T_c)[/tex](1+ 0.2)

= 20ns × 1.2

= 24ns

To determine the hit ratio H;

Using the formula:

[tex]T_e = T_c \times H+(1-H) \times (T_c + T_m) \\ \\ T_e = HT_c + T_c + T_m -HT_c -HT_m \\ \\ T_e = T_c +T_m - HT_m \\ \\ T_c -T_e = T_m (H-1) \\ \\ H-1 = \dfrac{T_c -T_e}{T_m} \\ \\ H = 1+ (\dfrac{T_c -T_e}{T_m})--- (1)[/tex]

Replacing the values; we have:

[tex]T_c - T_e = 20ns - 24 ns \\ \\ T_c - T_e = -4 ns \\ \\ \dfrac{T_c - T_e }{T_m} = \dfrac{-4 ns}{150} \\ \\ \dfrac{T_c - T_e }{T_m} = -0.02666667[/tex]

From (1)

[tex]H = 1+ (-0.2666667) \\ \\ H = 1 - 0.2666667 \\ \\ \mathbf{H = 0.7333333}[/tex]

ACCESS MORE