Answer:
H = 0.7333333
Explanation:
Given that:
The memory access time ([tex]T_m[/tex]) = 150 ns
The cache access time [tex](T_c)[/tex] = 20 ns
Effective access time [tex](T_e)[/tex] = 20% > [tex](T_c)[/tex]
Then, it implies that:
= [tex](T_c)[/tex] + 20% of
=[tex](T_c)[/tex](1+20%)
=[tex](T_c)[/tex](1+ 0.2)
= 20ns × 1.2
= 24ns
To determine the hit ratio H;
Using the formula:
[tex]T_e = T_c \times H+(1-H) \times (T_c + T_m) \\ \\ T_e = HT_c + T_c + T_m -HT_c -HT_m \\ \\ T_e = T_c +T_m - HT_m \\ \\ T_c -T_e = T_m (H-1) \\ \\ H-1 = \dfrac{T_c -T_e}{T_m} \\ \\ H = 1+ (\dfrac{T_c -T_e}{T_m})--- (1)[/tex]
Replacing the values; we have:
[tex]T_c - T_e = 20ns - 24 ns \\ \\ T_c - T_e = -4 ns \\ \\ \dfrac{T_c - T_e }{T_m} = \dfrac{-4 ns}{150} \\ \\ \dfrac{T_c - T_e }{T_m} = -0.02666667[/tex]
From (1)
[tex]H = 1+ (-0.2666667) \\ \\ H = 1 - 0.2666667 \\ \\ \mathbf{H = 0.7333333}[/tex]