Consider a 30-cm-diameter hemispherical enclosure. The dome is maintained at 600 K, and heat is supplied from the dome at a rate of 65 W while the base surface with an emissivity of 0.55 is maintained at 400 K. Determine the emissivity of the dome.

Respuesta :

Answer:

[tex]\epsilon_2=0.098[/tex]

Explanation:

Diameter [tex]d=30cm=0.3m[/tex]

Temperature [tex]T=600k[/tex]

Rate of supply [tex]r=65W[/tex]

Emissivity of base surface [tex]\in_b =0.55[/tex]

Temperature at base [tex]T_b=400k[/tex]

Generally the equation for Area of base surface is mathematically given by

 [tex]A_b=\frac{\pi}{4}d^2[/tex]

 [tex]A_b=\frac{\pi}{4}0.3^2[/tex]

 [tex]A_b=0.0707m^2[/tex]

Generally the equation for Area of Hemispherical dome is mathematically given by

 [tex]A_h=\frac{\pi}{2}d^2[/tex]

 [tex]A_h=\frac{\pi}{2}0.3^2[/tex]

 [tex]A_h=0.1414m^2[/tex]

Since base is a flat surface

 [tex]F_{11}+F_{12}=1[/tex]

 [tex]F_{11}=0[/tex]

Therefore

 [tex]F_{12}=1[/tex]

 [tex]A_b=0.0707m^2[/tex]

Generally the equation for Net rate of radiation heat transfer between two surfaces is mathematically given by

 [tex]Q_{21}=-Q_{12}[/tex]

 [tex]Q_{21}=\frac{\sigma(T_1^4-T_2^4)}{\frac{1-\epsilon}{A_b\epsilon_1} +\frac{1}{A_bF_{12}} +\frac{1-\epsilon_2}{A_h*\epsilon_2} }[/tex]

Where

 [tex]\sigma=5.67*10^{-8}[/tex]

Therefore

  [tex]65=\frac{(5.67*10^{-8}(400^4-600^4))}{\frac{1-0.55}{0.0707*0.55}+\frac{1}{0.0707}+\frac{1-\epsilon_2}{0.1414*\epsilon_2}}[/tex]

 [tex]\epsilon_2=0.098[/tex]

 [tex]\epsilon_2 \approx 0.1[/tex]

Therefore  the emissivity of the dome is

 [tex]\epsilon_2=0.098[/tex]

ACCESS MORE