Answer:
The correct answer is "0.0000039110".
Step-by-step explanation:
The given values are:
[tex]Y_n\rightarrow N(\mu, \sigma^2)[/tex]
[tex]\mu = 40n[/tex]
[tex]\sigma^2=100n[/tex]
[tex]n=20[/tex]
then,
The required probability will be:
= [tex]P(Y_{20}>1000)[/tex]
= [tex]P(\frac{Y_{20}-\mu}{\sigma} >\frac{1000-40\times 20}{\sqrt{100\times 20} } )[/tex]
= [tex]P(Z>\frac{1000-800}{44.7214} )[/tex]
= [tex]P(Z>\frac{200}{44.7214} )[/tex]
= [tex]P(Z>4.47)[/tex]
By using the table, we get
= [tex]0.0000039110[/tex]