A professor pays 25 cents for each blackboard error made in lecture to the student who pointsout the error. In a career ofnyears filled with blackboard errors, the total amount in dollarspaid can be approximated by a Gaussian random variableYnwith expected value 40nandand variance 100n. What is the probability that 20exceeds 1000

Respuesta :

Answer:

The correct answer is "0.0000039110".

Step-by-step explanation:

The given values are:

[tex]Y_n\rightarrow N(\mu, \sigma^2)[/tex]

[tex]\mu = 40n[/tex]

[tex]\sigma^2=100n[/tex]

[tex]n=20[/tex]

then,

The required probability will be:

= [tex]P(Y_{20}>1000)[/tex]

= [tex]P(\frac{Y_{20}-\mu}{\sigma} >\frac{1000-40\times 20}{\sqrt{100\times 20} } )[/tex]

= [tex]P(Z>\frac{1000-800}{44.7214} )[/tex]

= [tex]P(Z>\frac{200}{44.7214} )[/tex]

= [tex]P(Z>4.47)[/tex]

By using the table, we get

= [tex]0.0000039110[/tex]

ACCESS MORE