What is the inverse of the function g(x)=x^3/8+16?

The inverse of the function for [tex]g^{}(x) = \frac{x^{3} }{8}+16[/tex] is [tex]g^{-1}(x)=2\sqrt[3]{x-6}[/tex]
"The inverse function of a function f (also called the inverse of f ) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective, and if it exists, is denoted by [tex]f^{-1}[/tex]."
We have
[tex]g^{}(x) = \frac{x^{3} }{8}+16[/tex]
Replace g(x) with y
[tex]y =[/tex] [tex]\frac{x^{3} }{8}+16[/tex]
Interchange the variables
[tex]x= \frac{y^{3} }{8}+16[/tex]
Rewrite the equation as
[tex]\frac{y^{3} }{8}+16= x[/tex]
⇒[tex]\frac{y^{3} }{8}= x-16[/tex]
Multiply both sides of the equation by 8
[tex]8.\frac{y^{3} }{8}=8(x-16)[/tex]
⇒[tex]{y^{3} }=8(x-16)[/tex]
⇒[tex]{y^{3} }=8x-128[/tex]
⇒[tex]{y} }=\sqrt[3]{8x-128}[/tex]
⇒[tex]{y} }=2\sqrt[3]{x-6}[/tex]
Replace y with [tex]g^{-1}(x)[/tex]
⇒[tex]g^{-1}(x)=2\sqrt[3]{x-6}[/tex]
Hence, The inverse of the function for [tex]g^{}(x) = \frac{x^{3} }{8}+16[/tex] is [tex]g^{-1}(x)=2\sqrt[3]{x-6}[/tex]
Learn more about inverse of the function here
https://brainly.ph/question/3127772
#SPJ2