Respuesta :


I think this is the function
Ver imagen victoriajacintow6yuh

The inverse of the function for  [tex]g^{}(x) = \frac{x^{3} }{8}+16[/tex]  is  [tex]g^{-1}(x)=2\sqrt[3]{x-6}[/tex]

What is inverse of the function?

"The inverse function of a function f (also called the inverse of f ) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective, and if it exists, is denoted by  [tex]f^{-1}[/tex]."

We have

[tex]g^{}(x) = \frac{x^{3} }{8}+16[/tex]

Replace g(x) with y

[tex]y =[/tex] [tex]\frac{x^{3} }{8}+16[/tex]

Interchange the variables

[tex]x= \frac{y^{3} }{8}+16[/tex]

Rewrite the equation as

[tex]\frac{y^{3} }{8}+16= x[/tex]

⇒[tex]\frac{y^{3} }{8}= x-16[/tex]

Multiply both sides of the equation by 8

[tex]8.\frac{y^{3} }{8}=8(x-16)[/tex]

⇒[tex]{y^{3} }=8(x-16)[/tex]

⇒[tex]{y^{3} }=8x-128[/tex]

⇒[tex]{y} }=\sqrt[3]{8x-128}[/tex]

⇒[tex]{y} }=2\sqrt[3]{x-6}[/tex]

Replace y with [tex]g^{-1}(x)[/tex]

⇒[tex]g^{-1}(x)=2\sqrt[3]{x-6}[/tex]

Hence, The inverse of the function for  [tex]g^{}(x) = \frac{x^{3} }{8}+16[/tex] is  [tex]g^{-1}(x)=2\sqrt[3]{x-6}[/tex]

Learn more about inverse of the function here

https://brainly.ph/question/3127772

#SPJ2

ACCESS MORE