An electron that has an instantaneous velocity of is moving through the uniform magnetic field (a) Find the force on the electron due to the magnetic field. (b) Repeat your calculation for a proton having the same velocity

Respuesta :

Answer:

Explanation:

From the given information:

The missing value are as follows:

The velocity  [tex]v ^{\to} = (2.0 \times 10^6 \ m/s) \hat i + (3.0 \times 10^6 \ m.s) \hat j[/tex]

The uniform magnetic field [tex]B^{\to} = (0.030 T)\hat i -(0.15 T) \hat j[/tex]

The force on electron as a result of the Magnetic field is:

[tex]F^\to = q(v^\to \times B^\to)[/tex]

here;

Change of electron [tex]q = -1.6 \times 10^{-19} C[/tex]

Then,

[tex]v^{\to} \times B^{\to} = \left|\begin{array}{ccc}2\times10^6&3\times 10^6&0\\0.03&-0.15&0\end{array}\right|[/tex]

[tex]= \hat i(0-0) -\hat j ( 0-0) +\hat k (-3\times 10^5 -0.9\times 10^5) \\ \\ =-3.9 \times 10^5 \ k[/tex]

[tex]F^\to = q(v^\to \times B^\to)[/tex]

[tex]F^{\to} = -1.6 \times 10^{-19} \times -3.9 \times 10^5 \\ \\ F^{\to} = 6.24 \times 10^{-14 } \ N[/tex]

For the proton with the same velocity:

[tex]q = 1.6 \times 10^{-19 } \ C \\ \\ F = q (v^\to * B^\to) \ \\ \\ F^\to = q(-3.9 \times 10^5) \\ \\ F = (1.6 \times 10^{-19}) (-3.9 \times 10^5) \\ \\ \mathbf{F ^{\to} = -6.24 \times 10^{-14} \ N}[/tex]

ACCESS MORE