Respuesta :
Answer:
Step-by-step explanation:
From the question we are told that:
Null Hypothesis [tex]H_0: 50[/tex]
Alternative Hypothesis [tex]H_a: > 50[/tex]
Sample size [tex]n=50[/tex]
standard deviation[tex]\sigma=6[/tex]
Significance level [tex]\alpha=0.05[/tex]
a)
Sample mean [tex]\=x=52.5[/tex]
Generally the equation for Test statistics is mathematically given by
[tex]t=\frac{\=x-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]
[tex]t=\frac{52.5-50}{\frac{6}{\sqrt{50} } }[/tex]
[tex]t=2.95[/tex]
Therefore from table
[tex]Critical\ value=1.645[/tex]
We conclude The value of test statistics is greater than critical value.
Therefore we Reject the Null hypothesis [tex]H_0[/tex]
b)
Sample mean [tex]\=x=51[/tex]
Generally the equation for Test statistics is mathematically given by
[tex]t=\frac{\=x-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]
[tex]t=\frac{51-50}{\frac{6}{\sqrt{50} } }[/tex]
[tex]t=1.18[/tex]
Therefore from table
[tex]Critical\ value=1.645[/tex]
We conclude,The value of test statistics is less than critical value.
Therefore we Fail to Reject the Null hypothesis [tex]H_0[/tex]
c)
Sample mean [tex]\=x=51[/tex]
Generally the equation for Test statistics is mathematically given by
[tex]t=\frac{\=x-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]
[tex]t=\frac{51.8-50}{\frac{6}{\sqrt{50} } }[/tex]
[tex]t=2.12[/tex]
Therefore from table
[tex]Critical\ value=1.645[/tex]
We conclude The value of test statistics is greater than critical value.
Therefore we Fail to Reject the Null hypothesis [tex]H_0[/tex]