Respuesta :

Solution :

a. 36 - 20 = 16 units

According to basic proportionality theorem ,

  • [tex]\sf\implies\::\dfrac{30}{x\:+\:5}\:=\:\dfrac{16}{20}[/tex]

  • Cross multiply
  • ( x + 5 ) × 16 = 30 × 20
  • 16x + 80 = 600
  • 16x = 600 - 80
  • 16x = 520
  • [tex]\sf\implies\::x\:=\:\dfrac{520}{16}[/tex]
  • x = 32.5

Value of x + 5

  • 32.5 + 5
  • 37.5 units

___________________________________

b. By using basic proportionality theorem ,

  • [tex]\sf\implies\::\dfrac{4}{2x\:+\:4}\:=\:\dfrac{3}{x\:+\:7}[/tex]

  • Cross multiply
  • ( x + 7 ) × 4 = 3 × ( 2x + 4 )
  • 4x + 28 = 6x + 12
  • 28 - 12 = 6x - 4x
  • 16 = 2x
  • [tex]\sf\implies\::\dfrac{16}{2}\:=\:x[/tex]
  • x = 8

Value of x + 7

  • 8 + 7
  • 15 units

Value of 2x + 4

  • 16 + 4
  • 20 units
ACCESS MORE
EDU ACCESS