Respuesta :

Answer:

The total energy absorbed is 32.171 kilojoules.

Explanation:

The total energy absorbed by the ice is the sum of the sensible heat of ice and water and the latent heat of fusion of the water, that is:

[tex]Q = m\cdot [c_{i}\cdot (T_{2}-T_{1})+L_{f} + c_{w}\cdot (T_{3}-T_{2})][/tex] (1)

Where:

[tex]m[/tex] - Mass of the ice, in kilograms.

[tex]c_{i}[/tex] - Specific heat of ice, in kilojoules per kilogram-degree Celsius.

[tex]c_{w}[/tex] - Specific heat of water, in kilojoules per kilogram-degree Celsius.

[tex]L_{f}[/tex] - Latent heat of fusion, in kilojoules per degree Celsius.

[tex]T_{1}[/tex] - Initial temperature of water, in degrees Celsius.

[tex]T_{2}[/tex] - Fusion point of water, in degrees Celsius.

[tex]T_{3}[/tex] - Final temperature of water, in degree Celsius.

[tex]Q[/tex] - Total energy absorbed, in kilojoules.

If we know that [tex]m = 50.5\times 10^{-3}\,kg[/tex], [tex]c_{i} = 2.090 \,\frac{kJ}{kg\cdot^{\circ}C}[/tex], [tex]c_{w} = 4.180\,\frac{J}{kg\cdot ^{\circ}C}[/tex], [tex]L_{f} = 334\,\frac{kJ}{kg}[/tex], [tex]T_{1} = -15\,^{\circ}C[/tex], [tex]T_{2} = 0\,^{\circ}C[/tex] and [tex]T_{3} = 65\,^{\circ}C[/tex], then the total energy absorbed is:

[tex]Q= (50.5\times 10^{-3}\,kg)\cdot \left[\left(2.090\,\frac{kJ}{kg\cdot ^{\circ}C} \right)\cdot (15\,^{\circ}C) + 334\,\frac{kJ}{kg}+ \left(4.180\,\frac{kJ}{kg\cdot ^{\circ}C} \right)\cdot (65\,^{\circ}C)\right][/tex][tex]Q = 32.171\,kJ[/tex]

The total energy absorbed is 32.171 kilojoules.

ACCESS MORE