Respuesta :

110 degrees because the other side is equal to 70° and the line is 180 so you would subtract 70 from 180 to get you 110°

[tex] \huge{ \mathfrak{ Answer }}[/tex]

Exterior angle = sum of opposite interior angles,

so,

[tex] \boxed{(t + 10 )+( t )= 180-(t + 20)}[/tex]

  • [tex]2t + 10 = 180 - t - 20[/tex]
  • [tex]2t + t = 160 - 10[/tex]
  • [tex]3t = 150[/tex]
  • [tex]t = 50[/tex]

value of t = 50°

[tex] \boxed{Exterior \: \: angle = 180 -(t + 20)}[/tex]

  • [tex]180 - (50 + 20)[/tex]
  • [tex]180 - 70[/tex]
  • [tex]110°[/tex]

measure of exterior angle is 110°

[tex] \normalsize{ \#TeeNForeveR}[/tex]

RELAXING NOICE
Relax