Answer:
[tex]M = 4.67[/tex]
Step-by-step explanation:
Given
[tex]Data: 3, 7, 8, 12, 16, 18[/tex]
Required
The mean absolute deviation
Start by calculating the mean
[tex]\bar x = \frac{\sum x}{n}[/tex]
[tex]\bar x = \frac{3+ 7+ 8+ 12+ 16+ 18}{6}[/tex]
[tex]\bar x = \frac{64}{6}[/tex]
[tex]\bar x = 10.67[/tex]
The mean absolute deviation is then calculated using:
[tex]M = \frac{1}{n}\sum\limits^n_{i=1}|x _i - \bar x|[/tex]
So, we have:
[tex]M = \frac{1}{6}(|3 - 10.67| +|7 - 10.67| + |8 - 10.67| + |12 - 10.67| + |16 - 10.67| + |18 - 10.67|)[/tex]
[tex]M = \frac{1}{6}(|-7.67| +|- 3.67| + |-2.67| + |1.33| + |5.33| + |7.33|)[/tex]
Remove absolute brackets
[tex]M = \frac{1}{6}(7.67 +3.67 + 2.67 + 1.33 + 5.33 + 7.33)[/tex]
[tex]M = \frac{1}{6}*28[/tex]
[tex]M = 4.67[/tex]