What is the mean absolute deviation of the data: 3, 7, 8, 12, 16, 18 of each number. I tried to take a picture but it is too blurry. But pls hurry hurry!!!​

Respuesta :

Answer:

[tex]M = 4.67[/tex]

Step-by-step explanation:

Given

[tex]Data: 3, 7, 8, 12, 16, 18[/tex]

Required

The mean absolute deviation

Start by calculating the mean

[tex]\bar x = \frac{\sum x}{n}[/tex]

[tex]\bar x = \frac{3+ 7+ 8+ 12+ 16+ 18}{6}[/tex]

[tex]\bar x = \frac{64}{6}[/tex]

[tex]\bar x = 10.67[/tex]

The mean absolute deviation is then calculated using:

[tex]M = \frac{1}{n}\sum\limits^n_{i=1}|x _i - \bar x|[/tex]

So, we have:

[tex]M = \frac{1}{6}(|3 - 10.67| +|7 - 10.67| + |8 - 10.67| + |12 - 10.67| + |16 - 10.67| + |18 - 10.67|)[/tex]

[tex]M = \frac{1}{6}(|-7.67| +|- 3.67| + |-2.67| + |1.33| + |5.33| + |7.33|)[/tex]

Remove absolute brackets

[tex]M = \frac{1}{6}(7.67 +3.67 + 2.67 + 1.33 + 5.33 + 7.33)[/tex]

[tex]M = \frac{1}{6}*28[/tex]

[tex]M = 4.67[/tex]

ACCESS MORE
EDU ACCESS