Answer:
[tex]k = 6.74 * 10^{-5}[/tex]
Step-by-step explanation:
Given
[tex]F\ \alpha\ \frac{m * M}{r^2}[/tex] --- The variation
[tex]F = 675; m = 125; M = 225; r = 0.0530[/tex]
Required
Determine the constant of proportionality (k)
[tex]F\ \alpha\ \frac{m * M}{r^2}[/tex]
Express as an equation
[tex]F = k\frac{m * M}{r^2}[/tex]
Multiply both sides by [tex]r^2[/tex]
[tex]Fr^2 = km * M[/tex]
Make k the subject
[tex]k = \frac{Fr^2}{m * M}[/tex]
Given that: [tex]F = 675; m = 125; M = 225; r = 0.0530[/tex]
We have:
[tex]k = \frac{675* 0.0530^2}{125 * 225}[/tex]
[tex]k = \frac{1.896075}{28125}[/tex]
[tex]k = 0.000067416[/tex]
This can be represented as:
[tex]k = 6.74 * 10^{-5}[/tex]