contestada

11. Suppose a force F varies as the product of two masses, m and M, inversely as
the square of the distance r between them. If F= 675 when m = 125, M = 225,
and r=0.0530, find the constant of proportionality k.
A. 61.48 X 10-10
B. 1.27X10-
C. 6.74 x 10-5
D. 6.76X10°
E. None

Respuesta :

Answer:

[tex]k = 6.74 * 10^{-5}[/tex]

Step-by-step explanation:

Given

[tex]F\ \alpha\ \frac{m * M}{r^2}[/tex] --- The variation

[tex]F = 675; m = 125; M = 225; r = 0.0530[/tex]

Required

Determine the constant of proportionality (k)

[tex]F\ \alpha\ \frac{m * M}{r^2}[/tex]

Express as an equation

[tex]F = k\frac{m * M}{r^2}[/tex]

Multiply both sides by [tex]r^2[/tex]

[tex]Fr^2 = km * M[/tex]

Make k the subject

[tex]k = \frac{Fr^2}{m * M}[/tex]

Given that: [tex]F = 675; m = 125; M = 225; r = 0.0530[/tex]

We have:

[tex]k = \frac{675* 0.0530^2}{125 * 225}[/tex]

[tex]k = \frac{1.896075}{28125}[/tex]

[tex]k = 0.000067416[/tex]

This can be represented as:

[tex]k = 6.74 * 10^{-5}[/tex]

ACCESS MORE